Wikipedia

Search results

Friday, 30 January 2026

Obidi Field Equations (OFE) and the Curvature Invariant (OCI)

Obidi Field Equations (OFE) and the Curvature Invariant (OCI)

The Obidi field equations (OFE) and the curvature invariant are central to the Theory of Entropicity (ToE), which redefines entropy as a fundamental field of existence. 

The curvature invariant, ln 2, is derived from the smallest distinguishable entropic curvature difference, which corresponds to a binary curvature gap. This invariant is not a statistical artifact but the fundamental unit of entropic curvature in nature. 

The Obidi Action, a variational principle, integrates the Fisher–Rao and Fubini–Study metrics, providing a rigorous information-geometric foundation for entropy-driven dynamics. 

The Obidi Curvature Invariant (OCI) is a bold unification of entropy, geometry, and information, and it is calculated by the energy required to "flatten" or erase a single point of distinction in the field. This calculation maps exactly to the value ln 2, indicating that the smallest distinguishable entropic curvature difference corresponds to a binary curvature gap of ln 2.


1. Overview of the Obidi Field Equations

The Obidi Field Equations arise from the Obidi Actionthe foundational variational principle of John Onimisi Obidi’s Theory of Entropicity (ToE)In ToE, entropy is promoted from statistical quantity to dynamical scalar field S(x) that actively governs the evolution of the universe, including spacetime geometry, matter distribution, and information flow. The Obidi Action is structurally analogous to actions in classical mechanics and field theory, with three primary components:
SObidi=[A(S)(ablaS)2V(S)+ηSTμμ]gd4x
where:
  • (A(S)(
    abla S)^2is the kinetic term of the entropic field,
  • V(S) is self-interaction potential,
  • ηSTμμ couples entropy to the trace of the matter stress-energy tensor,
  • g is the determinant of the spacetime metric.
Varying this action with respect to S(x) yields the Master Entropic Equation (MEE)which serves as the core dynamical field equation in ToE:
δSObidiδS(x)=0MEE: SS+f(S,Tμμ)=0
Here, S is generalized d’Alembertian operator acting on the entropic field, and f(S,Tμμ) encodes nonlinear self-interaction and matter coupling. Unlike the Einstein equations, MEE is iterative and self-referentialreflecting the probabilistic and computational nature of entropy as an evolving informational field.

2. Iterative and Probabilistic Solution Structure

The Obidi field equations are not generally solvable in closed formThey operate as recursive, iterative mappings that evolve the entropy field through successive refinements. Each iteration represents snapshot of the universe’s informational stateakin to Bayesian update of probabilistic model:
Sn+1(x)=Sn(x)+δSn(x)
where δSn(x) is determined by local gradients, entropy production, and entropic interactions with matter. This reflects core principle of ToE: physical laws emerge as equilibria of ongoing entropic computation.

3. Entropic Curvature and Curvature Invariants

In analogy to general relativity, where curvature tensors (R_{\mu
u\rho\sigma}describe spacetime geometry, ToE introduces entropic curvature invariants that quantify the geometry of the underlying informational manifold induced by S(x)Key concepts include:
  • Entropic Metric (G_{\mu
    u}[S]):
     Emergent from spatial gradients of S(x) and its coupling to matter. It plays role formally analogous to the spacetime metric (g_{\mu
    u}).
  • Information-Curvature Tensor \mathcal^\alpha_{\ \beta \mu
    u}[S] ):
     Encodes how the entropy field bends the informational manifold, analogous to the Riemann tensor.
  • Curvature Invariants: Scalar measures that summarize the “entropic curvature” at point, similar to Ricci scalar or Kretschmann invariant in GR:
KS=RαβμuRαβμu,RS=Rμμ
These invariants are dynamicreflecting the continuous flow and redistribution of entropy across the entropic manifold. In physical terms, high entropic curvature regions correspond to areas with strong information and entropy flux, which manifest as emergent phenomena like gravitational attraction or quantum probabilistic effects.

4. Connection to Einstein Field Equations

The curvature invariants in ToE generalize the role of spacetime curvature in general relativity. In the low-entropy fluctuation limitwhere the entropic field evolves very slowly or gradients are negligible, the entropic curvature collapses to classical spacetime curvature:
Rμu[S]    Rμu[g],MEE Einstein equations Gμu=8πTμu
Thus, Einstein’s field equations appear as steady-state snapshot of the ToE dynamics, making general relativity special case within the entropic curvature framework.

5. Practical Implications

  • Iterative Computation: Solutions of the Obidi equations require iterative or numerical techniques, much like solving updated distributions in information geometry.
  • Emergent Geometry: Spacetime itself is manifestation of the entropic fieldwith curvature invariants representing local informational “density” rather than purely mass-energy content.
  • Unified Physics: Both gravitation and quantum uncertainty emerge from the same entropic field dynamics, linking curvature invariants to observable physics.

References for Deeper Study

  • Obidi Action and Master Entropic Equation
  • Theory of Entropicity: Path to Unification of Physics

Summary

The Obidi field equations describe the evolution of fundamental entropy field S(x)whose gradients and self-interactions dictate both the emergent geometry of spacetime and the flow of information, matter, and energyCurvature invariants in this theory quantify the bending and structure of the informational manifoldgeneralizing Einstein’s spacetime curvature. Practical solutions are iterative and probabilisticreflecting universe constantly reorganizing itself according to entropic principles.



References



No comments:

Post a Comment

Author’s Preface and Methodological Statement for the Theory of Entropicity (ToE): An Unapologetic Introduction in Defense of Obidi's New Theory of Reality—On the Trajectory of Discovery and the Road Less Traveled

Author’s Preface and Methodological Statement for the Theory of Entropicity (ToE): An Unapologetic Introduction in Defense of Obidi's Ne...