Last updated on:

On the Theory of Entropicity (ToE) and Ginestra Bianconi’s Gravity from Entropy: A Rigorous Derivation of Bianconi’s Results from the Entropic Obidi Actions of the Theory of Entropicity (ToE)

Last updated on:

On the Theory of Entropicity (ToE) and Ginestra Bianconi’s Gravity from Entropy: A Rigorous Derivation of Bianconi’s Results from the Entropic Obidi Actions of the Theory of Entropicity (ToE)

On the Theory of Entropicity (ToE) and Ginestra Bianconi’s Gravity from Entropy

A Rigorous Derivation of Bianconi’s Results from the Entropic Obidi Actions of the Theory of Entropicity (ToE)

(Version 1.0)

Abstract

This work presents a rigorous reformulation of Ginestra Bianconi’s Gravity from Entropy within the universal framework of the Theory of Entropicity (ToE). Whereas Bianconi interprets gravity as emerging from the quantum relative entropy between two metrics — a spacetime metric and a matter-induced metric — the present study demonstrates that her construction, essentially geometric in an operator-theoretic sense rather than information-geometric, can be fully recovered from the ToE under near-equilibrium expansion and appropriate correspondence between the ToE’s entropy field and Bianconi’s informational metrics. In this view, Bianconi’s model appears as a specific limiting case within the broader entropy–geometric structure of ToE, rather than a separate theory.

In ToE, entropy is not a statistical descriptor but a fundamental physical field whose gradients generate curvature, motion, and temporal flow. By expanding the ToE’s variational principle, known as the Obidi Action, around an equilibrium configuration, Bianconi’s relative-entropy functional naturally emerges as its quadratic approximation. This reveals that her formulation corresponds to the weak-gradient or quasi-equilibrium regime of the universal entropic field, in which informational and operator geometries become equivalent.

ToE introduces two complementary formulations of physical law: the Local Obidi Action, which describes the differential dynamics of the entropy field, and the Spectral Obidi Action, which expresses the same physics globally through operator traces. The spectral formulation connects equilibrium geometry and its matter-deformed counterpart through the modular operator, establishing a bridge between local field equations and global spectral consistency. This duality between local and spectral dynamics distinguishes ToE from prior entropy-based theories.

Through this unification, ToE shows that entropy is not merely a comparative measure, as in Bianconi’s dual-metric approach, but the ontological substrate of reality itself — the single field from which both matter and geometry arise recursively. Moreover, ToE extends the framework to a universal principle: spectral operator actions are not optional reformulations but fundamental components of physical law. By integrating bosonic and fermionic dynamics into a single entropic–spectral variational structure, ToE provides a common origin for the Einstein–Hilbert, Yang–Mills, Klein–Gordon, and Dirac actions, demonstrating that they are not disparate constructs but natural projections of one universal field theory.

Additionally, ToE clarifies the physical significance of Bianconi’s auxiliary G-field and her emergent cosmological constant. Both are shown to arise from the global conservation of entropy flux — a principle that naturally produces a small positive cosmological constant and explains the dark-matter energy density as a spectral property of the entropic field.

Taken together, these results confirm that Bianconi’s framework is entirely contained within ToE, just as classical mechanics is contained within quantum theory. ToE also encompasses earlier thermodynamic and information-theoretic gravitation models proposed by Jacobson, Padmanabhan, and Verlinde, demonstrating that all such approaches are boundary cases of a single entropic field theory. By offering a consistent canonical quantization of the Obidi Actions and resolving the physical meaning of the G-field, ToE not only fulfills Bianconi’s open challenges but also establishes itself as a breakthrough framework — a unifying principle where entropy, information, and geometry converge to describe the fundamental structure of reality.

Keywords

Amari — Čencov $\alpha$ — connections; Araki Relative Entropy; Atiyah — Singer Index Theorem; Bekenstein — Hawking Entropy; Bosons; Canonical Quantization; Dark Matter; Dirac — Kähler Fermions; Dirac Spinors; Einstein — Hilbert Action; Entropic Field; Entropy Geometry; Fermions; Fisher — Rao Metric; Fubini — Study Metric; G — Field; Ginestra Bianconi; Information Geometry; Jacobson Thermodynamics; Local Obidi Action (LOA); Obidi Actions; Padmanabhan Entropic Gravity; Quantum Gravity; Relative Entropy; Rényi Entropy; Shannon Information; Small Positive Cosmological Constant; Spectral Action; Spectral Geometry; Spectral Obidi Action (SOA); Spectral Theories; Theory of Entropicity (ToE); Tsallis Entropy; Verlinde Emergent Gravity; Vuli — Ndlela Integral; Yang — Mills Theory.

References

Obidi, John Onimisi (12 Nov. 2025). On the Theory of Entropicity (ToE) and Ginestra Bianconi’s Gravity from Entropy: A Rigorous Derivation of Bianconi’s Results from the Entropic Obidi Actions of the Theory of Entropicity (ToE). Figshare. https://doi.org/10.6084/m9.figshare.30596129.v1

[1] S. Amari and H. Nagaoka. Methods of Information Geometry. Oxford University Press, 2000. Comprehensive textbook on information geometry, covering Fisher metric and α-connections. URL: https://doi.org/10.1093/acprof:oso/9780198506054.001.0001. [2] Shun-ichi Amari. Information Geometry and Its Applications. Springer, 2016. URL: https://www. springerprofessional.de/information-geometry-and-its-applications/16249580. [3] Shun-ichi Amari and Andrzej Cichocki. Information geometry of divergence functions. Bulletin of the Polish Academy of Sciences: Technical Sciences, 58(1):183–195, 2010. URL: https://journals. pan.pl/Content/83037/PDF/19_paper.pdf, doi:10.2478/v10175–010–0019–1. [4] Huzihiro Araki. mann algebras. Relative hamiltonian and radon–nikodym theorem in von neu Pacific Journal of Mathematics, 52(1):1–16, 1974. URL: https: //projecteuclid.org/journals/pacific-journal-of-mathematics/volume-52/issue-1/ Relative-Hamiltonian-and-Radon-Nikodym-Theorem-in-von-Neumann-Algebras/pjm/ 1102910040.full. [5] Huzihiro Araki. Relative entropy of states of von neumann algebras. Publications of the Research Institute for Mathematical Sciences, 11:809–833, 1975. URL: https://ems.press/journals/prims/ articles/1195191148, doi:10.2977/prims/1195191148. [6] Huzihiro Araki. Relative entropy of states of von neumann algebras. Publ. Res. Inst. Math. Sci., 11(3):809–833, 1976. URL: https://doi.org/10.2977/prims/1195188086. [7] Huzihiro Araki. Relative entropy of states of von neumann algebras. ii. Publ. Res. Inst. Math. Sci., 13(1):173–192, 1977. URL: https://doi.org/10.2977/prims/1195188087. [8] Huzihiro Araki. sity Press, Mathematical Theory of Quantum Fields. USA, 1999. Oxford Univer URL: https://global.oup.com/academic/product/ mathematical-theory-of-quantum-fields-9780199566402

[9] George B. Arfken, Hans J. Weber, and Frank E. Harris. Mathematical Methods for Physicists: A Comprehensive Guide. Academic Press, 7th edition, 2013. URL: https://www.sciencedirect. com/book/9780123846549/mathematical-methods-for-physicists. [10] Aristotle. Metaphysics. The Internet Classics Archive, 350 BCE. Translated by W. D. Ross. URL: http://classics.mit.edu/Aristotle/metaphysics.html. [11] Michael F. Atiyah. Abstract elliptic operators and k-theory. Publications Mathématiques de l’IHÉS, 32:305–362, 1969. doi:10.1007/BF02684335. [12] Michael F. Atiyah, Raoul Bott, and Vijay K. Patodi. On the heat equation and the index theorem. Inventiones Mathematicae, 19:279–330, 1973. doi:10.1007/BF01390155. [13] Michael F. Atiyah, Vijay K. Patodi, and Isadore M. Singer. Spectral asymmetry and riemannian geometry i. Mathematical Proceedings of the Cambridge Philosophical Society, 77(1):43–69, 1975. doi:10.1017/S0305004100051872. [14] Michael F. Atiyah and Isadore M. Singer. The index of elliptic operators on compact man ifolds. Bulletin of the American Mathematical Society, 69(3):422–433, 1963. doi:10.1090/ S0002–9904–1963–10957-X. [15] Peter Becher and Hans Joos. The dirac–kähler equation and fermions on the lattice. Zeitschrift für Physik C Particles and Fields, 15:343–365, 1982. doi:10.1007/BF01403829. [16] David Berenstein, Simon Catterall, and P. N. Lloyd. Staggered bosons and kähler–dirac bosons. In Proceedings of Science, CORFU2023, page 280, 2024. URL: https://pos.sissa.it/453/280, doi:10.22323/1.453.0280. [17] Ginestra Bianconi. Gravity from entropy. Physical Review D, 111:066001, 2025. URL: https: //doi.org/10.1103/PhysRevD.111.066001. [18] Titus Lucretius Carus. De Rerum Natura (On the Nature of Things). The Internet Classics Archive, MIT, c. 50 BCE. Translated by William Ellery Leonard. URL: http://classics.mit.edu/Carus/ nature_things.html. [19] Nikolai N. Cencov. Statistical Decision Rules and Optimal Inference, volume 53 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1982. English trans lation from the Russian edition (1972). Proves the uniqueness of the Fisher–Rao metric under the monotonicity requirement. URL: https://bookstore.ams.org/mmono-53. [20] Alain Connes. Noncommutative Geometry. Academic Press, 1994. URL: https://www. sciencedirect.com/book/9780121858605/noncommutative-geometry. [21] Anand G. Dabak and Don H. Johnson. Relations between kullback-leibler distance and fisher in formation. Rice University Technical Report, 2000. Generalizes the relationship between KL di vergence and Fisher information beyond small perturbations. URL: https://www.ece.rice.edu/ ~dhj/distance.pdf. [22] Nicolas Delporte, Saswato Sen, and Reiko Toriumi. Dirac walks on regular trees. Journal of Physics A: Mathematical and Theoretical, 57(27):275002, 2023. doi:10.1088/1751–8121/acd2f0. [23] Albert Einstein. Die feldgleichungen der gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, pages 844–847, 1915. URL: https://en.wikisource.org/ wiki/Translation:The_Field_Equations_of_Gravitation. [24] Albert Einstein. Explanation of the perihelion motion of mercury from general relativity theory. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, pages 831–839, 1915. URL: https://arxiv.org/abs/1411.73. [25] R. A. Fisher. Theory of statistical estimation. Proceedings of the Cambridge Philosophical Society, 22:700–725, 1925. Introduced the Fisher information, leading to the Fisher–Rao metric on probability distributions. URL: https://doi.org/10.1017/S0305004100019299. [26] Luciano Floridi. The Philosophy of Information. Oxford University Press, Oxford, 2011. URL: https://academic.oup.com/book/32518, doi:10.1093/acprof:oso/9780199232383.001.0001.

[27] Daniel S. Freed and Karen K. Uhlenbeck, editors. Geometry and Quantum Field Theory, volume 1 of IAS/Park City Mathematics Series. American Mathematical Society, 1995. URL: https:// bookstore.ams.org/pcms-1/. [28] Guido Fubini. Sulle pluricome funzioni ellittiche di seconda specie. Rendiconti del Circolo Matematico di Palermo, 18:23–28, 1904. doi:10.1007/BF02427257. [29] Cheng-Der Fuh, Chu-Lan Michael Kao, and Tianxiao Pang. Kullback-leibler divergence and akaike information criterion in general hidden markov models. arXiv preprint, 2023. Characterizes Kullback Leibler divergence and Fisher information in parametrized hidden Markov models. URL: https: //arxiv.org/abs/2303.07673, doi:10.48550/arXiv.2303.07673. [30] Uffe Haagerup. The standard form of von neumann algebras. Mathematica Scandinavica, 37(2):271 283, 1975. URL: https://www.jstor.org/stable/24491592. [31] Martin Heidegger. URL: Being and Time. HarperCollins, New York, 1927. https://ia601609.us.archive.org/29/items/pdfy-6-meFnHxBTAbkLAv/ 42700894-Martin-Heidegger-Being-and-Time.pdf. [32] Shun ichi Amari. Differential-Geometrical Methods in Statistics, volume 28 of Lecture Notes in Statistics. Springer, 1985. Originally published in Japanese, 1982. URL: https://link.springer. com/book/10.1007/978–1–4612–5056–2. [33] Claude Itzykson and Jean-Bernard Zuber. Quantum Field Theory. McGraw-Hill, 1980. URL: https://www.worldcat.org/title/quantum-field-theory/oclc/6445912. [34] Ted Jacobson. Thermodynamics of spacetime: The einstein equation of state. Physical Review Letters, 75(7):1260–1263, 1995. URL: https://doi.org/10.1103/PhysRevLett.75.1260. [35] Immanuel Kant. Critique of Pure Reason. Project Gutenberg, 1781. Originally published 1781; accessed via Project Gutenberg. URL: https://www.gutenberg.org/ebooks/4280. [36] Esko Keski-Vakkuri, Claus Montonen, and Marco Panero. Physics: Mathematical Methods for An Introduction to Group Theory, Topology and Geometry. versity Press, Cambridge, England, 2022. Cambridge Uni URL: https://www.cambridge.org/core/ books/mathematical-methods-for-physics/A409C0F389C5BA7FAA9E1E933FCACEB4, 10.1017/9781108120531. doi: [37] Hideki Kosaki. Relative entropy of states: A variational expression. Journal of Operator Theory, 16(2):335–348, 1986. URL: https://www.jstor.org/stable/24714708. [38] S. I. Kruglov. Dirac–kähler equation. International Journal of Theoretical Physics, 41:653–687, 2002. URL: https://link.springer.com/article/10.1023/A:1015280310677, doi:10.1023/A: 1015280310677. [39] Solomon Kullback and Richard A. Leibler. On information and sufficiency. Annals of Mathematical Statistics, 22(1):79–86, 1951. URL: https://projecteuclid.org/euclid.aoms/1177729694, doi: 10.1214/aoms/1177729694. [40] L. D. Landau and E. M. Lifshitz. The Classical Theory of Fields, volume 2. Pergamon Press, 1975. URL: https://inspirehep.net/literature/1235601. [41] Seth Lloyd. Ultimate physical limits to computation. Nature, 406(6799):1047–1054, 2000. doi: 10.1038/35023282. [42] John Locke. An Essay Concerning Human Understanding. Project Gutenberg, 1690. First published 1690; accessed via Project Gutenberg. URL: https://www.gutenberg.org/ebooks/10615. [43] Mikio Nakahara. Geometry, Topology and Physics. CRC Press, Boca Raton, 2nd edi tion, 2018. URL: https://www.taylorfrancis.com/books/mono/10.1201/9781315275826/ geometry-topology-physics-mikio-nakahara, doi:10.1201/9781315275826. [44] Isaac Newton. Philosophiæ Naturalis Principia Mathematica. Joseph Streater for the Royal Society, 1687. URL: https://archive.org/details/philosophiaenatu00newt_0/

[45] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 10th anniv. ed. edition, 2010. See Chapter 2 for Bloch sphere and Fubini–Study distance for qubits; discusses distinguishability of quantum states. URL: https://doi.org/10. 1017/CBO9780511976667. [46] John Onimisi Obidi. Einstein and bohr finally reconciled on quantum theory: The theory of entrop icity (toe) as the unifying resolution to the problem of quantum measurement and wave function collapse: A befitting contribution to this year’s centennial reflection and celebration of the birth of quantum mechanics. Cambridge University, 14th April 2025. URL: https://doi.org/10.33774/ coe-2025-vrfrx. [47] John Onimisi Obidi. On the discovery of new laws of conservation and uncertainty, probability and cpt-theorem symmetry-breaking in the standard model of particle physics: More revolutionary insights from the theory of entropicity (toe). Cambridge University, 14th June 2025. URL: https: //doi.org/10.33774/coe-2025-n4n45. [48] John Onimisi Obidi. On the conceptual and mathematical foundations of the theory of entropicity (toe): An alternative path toward quantum gravity and the unification of physics. Cambridge University, 17th October 2025. URL: https://doi.org/10.33774/coe-2025-1dsrv. [49] John Onimisi Obidi. A simple explanation of the unifying mathematical architecture of the theory of entropicity (toe): Crucial elements of toe as a field theory. Cambridge University, 20th October 2025. URL: https://doi.org/10.33774/coe-2025-bpvf3. [50] John Onimisi Obidi. Review and analysis of the theory of entropicity (toe) in light of the attosecond entanglement formation experiment: Toward a unified entropic framework for quantum measure ment, non-instantaneous wave-function collapse, and spacetime emergence. Cambridge University, 29th March 2025. URL: https://doi.org/10.33774/coe-2025-7lvwh. [51] John Onimisi Obidi. A critical review of the theory of entropicity (toe) on original contributions, conceptual innovations, and pathways towards enhanced mathematical rigor: An addendum to the discovery of new laws of conservation and uncertainty. Cambridge University, 30th June 2025. URL: https://doi.org/10.33774/coe-2025-hmk6n. [52] Daniele Oriti, editor. Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter. Cambridge University Press, Cambridge, 2009. URL: https://www.cambridge. org/core/books/approaches-to-quantum-gravity/AC00BDFEBDCDD1F8741C3F6DF36DB2F4, doi: 10.1017/CBO9780511575549. [53] T. Padmanabhan. Thermodynamical aspects of gravity: New insights. Rep. Prog. Phys., 73:046901, 2010. doi:10.1088/0034–4885/73/4/046901. [54] Michela Petrini, Gianfranco Pradisi, and Alberto Zaffaroni. ematical Methods for Physicists: A Guide to Math Advanced Topics and Applications. ford University Press, 2017. Ox URL: https://global.oup.com/academic/product/ a-guide-to-mathematical-methods-for-physicists-9780198787754. [55] Dénes Petz. Quasi-entropies for finite quantum systems. Reports on Mathematical Physics, 23(1):57 65, 1986. URL: https://doi.org/10.1016/0034-4877(86)90067-4. [56] Plato. Timaeus. The Internet Classics Archive, 360 BCE. Translated by Benjamin Jowett. URL: http://classics.mit.edu/Plato/timaeus.html. [57] C. R. Rao. Information and the accuracy attainable in the estimation of statistical parameters. Bulletin of the Calcutta Mathematical Society, 37:81–91, 1945. Early work recognizing the Fisher information metric and its geometric significance. URL: https://doi.org/10.1007/BF02862264. [58] Michael Reed and Barry Simon. Methods of Modern Mathematical Physics. Academic Press, 1972–1979. Four volumes: I. Functional Analysis (1972, rev. 1980); II. Fourier Analysis, Self Adjointness (1975); III. Scattering Theory (1979); IV. Analysis of Operators (1978). URL: https: //www.worldcat.org/title/methods-of-modern-mathematical-physics/oclc/466478623

[59] Paul Renteln. Manifolds, Tensors and Forms: An Introduction for Mathematicians and Physicists. Cambridge University Press, Cambridge, England, 2014. URL: https://www.cambridge. org/core/books/manifolds-tensors-and-forms/BFC73A7CFA458C89D83113D5F99FC6CA, doi:10.1017/CBO9781107324893. [60] Carlo Rovelli. The Order of Time. Penguin Books, London, 2018. URL: https://www.penguin. co.uk/books/301539/the-order-of-time-by-rovelli-carlo/9780141984964. [61] Alfréd Rényi. On measures of information and entropy. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, pages 547–561, Berkeley, California, 1961. University of California Press. URL: https: //projecteuclid.org/euclid.bsmsp/1200512181. [62] J. J. Sakurai and J. Napolitano. Modern quantum mechanics. Addison–Wesley, page 568, 2010. URL: https://www.amazon.com/Modern-Quantum-Mechanics-J-Sakurai/dp/1108422411. [63] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):379 423, 1948. doi:10.1002/j.1538–7305.1948.tb01338.x. [64] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Pro ceedings of the 35th Annual Symposium on Foundations of Computer Science, pages 124–134, 1994. doi:10.1109/SFCS.1994.365700. [65] Shlomo Sternberg. 1994. Group Theory and Physics. Cambridge University Press, URL: https://www.cambridge.org/core/books/group-theory-and-physics/ 7F6F3C6F2E7C0A1E4E9E0C9E6E5E7F6F. [66] Eduard Study. Zur theorie der linearen gleichungen im gebiete der komplexen veränderlichen. Math ematische Annalen, 66:106–175, 1908. doi:10.1007/BF01444616. [67] Stephen J. Summers. Tomita–takesaki modular theory. Encyclopedia of Mathematical Physics, 2005. Available on arXiv. URL: https://arxiv.org/abs/math-ph/0511034. [68] Masamichi Takesaki. Theory of Operator Algebras I. Encyclopaedia of Mathematical Sciences. Springer, 1979. URL: https://link.springer.com/book/10.1007/978-3-642-61498-7. [69] Masamichi Takesaki. Theory of Operator Algebras II. Encyclopaedia of Mathematical Sciences. Springer, 2003. URL: https://link.springer.com/book/10.1007/978-3-642-61497-0. [70] Constantino Tsallis. Possible generalization of boltzmann–gibbs statistics. Journal of Statistical Physics, 52(1–2):479–487, 1988. doi:10.1007/BF01016429. [71] Vlatko Vedral. The role of relative entropy in quantum information theory. Reviews of Modern Physics, 74(1):197–234, 2002. URL: https://link.aps.org/doi/10.1103/RevModPhys.74.197, doi:10.1103/RevModPhys.74.197. [72] Vlatko Vedral. Decoding Reality: The Universe as Quantum Information. Oxford University Press, Oxford, 2010. URL: https://academic.oup.com/book/40594, doi:10.1093/acprof:oso/ 9780199237692.001.0001. [73] E. P. Verlinde. On the origin of gravity and the laws of newton. JHEP, 04:029, 2011. Proposes gravity as an entropic force caused by changes in information associated with positions of material bodies. URL: https://arxiv.org/abs/1001.0785. [74] John von Neumann. Thermodynamik quantenmechanischer gesamtheiten. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pages 273–291, 1927. Original paper introducing the quantum entropy (von Neumann entropy). URL: https: //eudml.org/doc/59234. [75] John von Neumann. Mathematische Grundlagen der Quantenmechanik. Springer, Berlin, 1932. English translation: Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955 (transl. Robert T. Beyer). URL: https://en.wikipedia.org/wiki/Mathematical_ Foundations_of_Quantum_Mechanics. 7

[76] John von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton Uni versity Press, 1955. URL: https://press.princeton.edu/books/paperback/9780691028934/ mathematical-foundations-of-quantum-mechanics. [77] Alfred North Whitehead. Process and Reality: An Essay in Cosmology. Macmillan, New York, 1929. Based on the Gifford Lectures, 1927–28. Corrected edition edited by David Ray Griffin and Donald W. Sherburne, Free Press, 1978. URL: https://archive.org/details/processrealityco00whit. [78] Alfred North Whitehead. Adventures of Ideas. Macmillan, New York, 1933. URL: https://archive. org/details/in.ernet.dli.2015.218584. [79] Wikipedia contributors. Tomita–takesaki theory. https://en.wikipedia.org/wiki/Tomita%E2% 80%93Takesaki_theory, 2025. Accessed November 11, 2025. [80] Eberhard Zeidler. Quantum Field Theory: A Bridge Between Mathematicians and Physicists. Springer, 2006. Six volumes: I–VI. URL: https://link.springer.com/series/7560

No comments:

Post a Comment

The Theory of Entropicity (ToE) Declares That No Two Observers Can Ever See the Same Event at the Same Instant!

The Theory of Entropicity (ToE) Declares That No Two Observers Can Ever See the Same Event at the Same Instant! Preamble The Theory of Entro...